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When do finite sample effects significantly affect entropy
estimates?
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Abstract. An expression is proposed for determining the error made by neglecting finite sample effects in
entropy estimates. It is based on the Ansatz that the ranked distribution of probabilities tends to follow a
Zipf scaling.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The growing interest in complexity measures and symbolic
dynamics [1,2] has brought to the forefront various prob-
lems related to the estimation of entropic quantities from
finite sequences [3]. Such estimates are known to suffer
from a bias, which prevents quantities such as the metric
entropy from being meaningfully estimated. The purpose
of this letter is to provide an analytical expression for this
bias, in order to test for finite sample effects in entropy
estimates.

Consider the general case of a string of N symbols
{i1i2 · · · iN}, each of which belongs to a finite alphabet A.
The average informational content of substrings of length
d taken from this sequence is expressed by the Shannon
entropy [4]

Hd = −
∑

i1,...,id∈A
µ ([i1i2 · · · id]) logµ ([i1i2 · · · id]) , (1)

where µ is the natural invariant measure with respect to
the shift. Of particular interest is the block or dynamical
Shannon entropy hd = Hd+1 − Hd from which one gets
the measure-theoretic entropy of the system

h(µ) = lim
d→∞

hd , (2)

a quantity that is intimately related to the Kolmogorov-
Sinäı entropy in case the string represents the output of a
shift dynamical system.

The main problem lies in the estimation of the empir-
ical measure µ from a finite string of symbols. Direct box
counting yields

µ ([i1i2 · · · id]) ≈
#[i1i2 · · · id]
N − d+ 1

, (3)
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where #[i1i2 · · · id] is the occurrence frequency of the block
i1i2 · · · id in the string. It is well known that statistical
fluctuations in the sample on average lead to a systematic
underestimation of the entropy. This problem becomes
particularly acute as the word size increases for a given
string length N . Since this deviation can easily be mis-
taken for the signature of a finite memory process, it is
of prime importance to determine whether its origin is
physical or not.

Several authors have already addressed the problem of
making corrections to empirical entropy estimates [3,5–7];
their expressions are valid as long as the occurrence fre-
quencies of the observed words are large compared to one.
While this may hold for relatively short words, it breaks
down for long ones, making it difficult for a small cor-
rection to be used as a safe indication for a small devia-
tion. Our objective is to derive a more reliable (although
less accurate) expression of the deviation, to be used as a
warning signal against the onset of finite sample effects.

As a first guess one could require the sample to be
long enough for each word to have a chance to appear.
This gives N � Nd

symb, where Nsymb is the cardinality of
the alphabet. This criterion, however, is generally found to
be too conservative because it does not take into account
the grammar, i.e. the rules that cause some words to be
forbidden or less frequent than others.

2 The Zipf-ordered distribution

To derive our expression, we first rank the words according
to their frequency of occurrence: let nk=1 denote the fre-
quency of occurrence of the most probable word, nk=2 of
the next most probable one etc. Multiple instances of the
same frequency get consecutive ranks. This monotonically
decreasing distribution is called Zipf-ordered.

The Asymptotic Equipartition Property introduced by
Shannon [4] states that the ensemble of words of length
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d can be divided into two subsets. The first one consists
of “typical words” that occur frequently and roughly have
the same probability of occurrence. The other subset is
made of “rare words” that belong to the tail of the dis-
tribution. According to the Shannon-Breiman-MacMillan
theorem, the entropy is related to the typical words in the
limit where N → ∞; the contribution of rare words pro-
gressively disappears as N increases. In some sense this
observation justifies the procedure to be described below.

It was noted by Pareto [8], Zipf [9] and others, and
later interpreted by Mandelbrot [10] that the tail of the
Zipf-ordered distribution nk tends to follow a universal
scaling law

nk = αk−γ , γ > 0, (4)

which is found with astonishing reproducibility in eco-
nomics, social sciences, physics etc. [10]. As shown
in [11,12], many different systems give rise to Zipf laws,
whose ubiquity is thought to be essentially a consequence
of the ranking procedure.

The physical meaning of Zipf’s law is still an unsettled
question, although it does not seem to reflect any partic-
ular self-organization (see for example [13,14]). We just
mention that a slow decay is an indication for a “rich vo-
cabulary”, in the sense that rare words occur relatively
often.

The key point is that the empirical Zipf-ordered distri-
bution has a cutoff at some finite value k = Nmax because
of the finite length of the symbol string. For the same rea-
son, the occurrence frequencies are necessarily quantized.
Our main hypothesis is that the true distribution extends
beyond Nmax, up to the lexicon size K ≥ Nmax, following
Zipf’s law with the same exponent γ. This Ansatz has al-
ready been suggested as a way to estimate entropies from
long words [15].

3 Estimating the bias

Let Ĥ be the Shannon entropy computed from the empir-
ical distribution (using Eqs. (1, 3)) and H the entropy one
would obtain from a non truncated distribution, in which
the frequencies are not quantized anymore and extend be-
yond Nmax following Zipf’s law

Ĥ = −
Nmax∑
k=1

nk∑Nmax
k=1 nk

log
nk∑Nmax

k=1 nk
, (5)

H = −
K∑
k=1

nk∑K
k=1 nk

log
nk∑K
k=1 nk

·

The truncation has two counteracting effects. It changes
the renormalization of the occurrence frequencies and
causes some of the least frequent words to be omitted.

The difference δ between the two entropy estimates

δ = H − Ĥ (6)

is what we call the bias, to be used as a measure of the
deviation resulting from finite sample effects. We shall as-
sume that Nmax � 1, which is equivalent to saying that

the distribution must have a sufficiently long tail for a
power law to make sense.

It is natural to define a small parameter 0 ≤ ε � 1,
which goes to zero for a non truncated distribution

ε =
1
N

K∑
k=Nmax+1

nk. (7)

Remember that N =
∑K
k=1 nk [16].

Now, assuming that Zipf’s law persists for k > Nmax,
we have

ε =
1
N

K∑
k=Nmax+1

αk−γ =
α

N

(
ζ(γ,Nmax+1)−ζ(γ,K+1)

)
,

(8)
where ζ(γ,m) is the Hurwitz or generalized Riemann
zeta function. For k > γ, the following approximation
holds [17]

ζ(γ,m) =
m1−γ

γ − 1
− m−γ

2
+
m−γ−1

12
· (9)

Since K,Nmax � 1, we may write

ε =
α

N(γ − 1)
(
Nmax

1−γ −K1−γ) . (10)

The value of α remains to be determined. To do so, we note
that the least frequent words in the Zipf-ordered distribu-
tion occur once or a few times only. One may therefore
reasonably set nk=Nmax ≈ 1, giving α ≈ Nγ

max.
The bias δ can now be expanded in powers of ε. Keep-

ing terms of order O(ε) only, we have

δ = −εĤ + (1 + ε)

(
ε−

K∑
k=Nmax+1

nk
N

log
nk
N

)
. (11)

For the conditions stated before, the sum can be approx-
imated by

−
K∑

k=Nmax+1

nk
N

log
nk
N

= −ε
(

logN − γ log
Nmax

K

)
,

(12)
finally giving the result of interest

δ = ε

(
1 + logN − Ĥ − γ log

Nmax

K

)
(13)

ε ≈ Nmax

N(γ − 1)

(
1−

(
Nmax

K

)γ−1
)
.

Notice that the true entropy is always underestimated;
furthermore ε is continuous at γ = 1 [18]. Most of the
variation comes from the small parameter ε, whose
expression reveals two different effects:

1) the ratio Nmax/N reflects the uncertainty of the
frequency estimates;
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2) the scaling index γ, whose value is usually between
0.5 to 1.5, is indicative of the lacunarity of the word distri-
bution. In the case of a shift dynamical system, γ reveals
how unevenly the rare orbits fill the phase space.
For the sake of comparison, the first order approximation
for finite sample effects derived in [5,6] is

δ =
Nmax

2N
· (14)

We conclude from equation (13) that the bias is not just
related to statistical fluctuations in the empirical occur-
rence frequency, but is also caused by the omission of
words that are asymptotically rare. If the true distribu-
tion of the ranked words were exponential or ultimately
ended with an exponential tail, then our criterion would
be too conservative but still reliable as such.

The following procedure is proposed for detecting the
maximum word length for which entropies can be mean-
ingfully estimated: compute Zipf-ordered distributions for
increasing word-lengths d. For each length, estimate the
bias δ by least-squares fitting a power law to the tail of
the observed distribution. As soon as this bias exceeds a
given threshold (say 10% of Ĥ), then entropies computed
from longer words are likely to be significantly corrupted
by finite sample effects.

Equation (13) supposes that the maximum lexicon size
K is known a priori, which is seldom the case. This is
not a serious handicap, however, since the value of K has
relatively little impact on the bias; a rough approximation
such as K = Nd

symb may do well.

4 Two examples

To briefly illustrate the results, we now consider two ex-
amples. The first one is based on a Bernouilli process,
whose entropy and Zipf-ordered distribution can be cal-
culated analytically. The string of symbols is drawn from
a two letter alphabet, one with probability λ and the other
with probability 1− λ. The block entropy of this process
is independent of the word length and equals

h = −λ logλ− (1− λ) log(1− λ) . (15)

Figure 1 compares the true block entropy with estimates
drawn from a sample of length N = 2000 with λ = 0.15.
The departure of the empirical estimate from the true one
is evident. Without knowledge of the true entropy, how-
ever, it is very difficult to tell whether the decrease of the
entropy is an artifact or just the signature of a short-time
memory.

The second panel displays the true and the empirical
Zipf-ordered distributions as obtained for words of length
d = 9. Zipf’s law clearly holds for words whose rank ex-
ceeds about 30. After this, the scaling exponent γ is esti-
mated, see the third panel. The decrease of this exponent
with the word length d suggests that the contribution of
the rare words becomes increasingly important. Finally,
the bias δ, which is shown in the fourth panel, suggests
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Fig. 1. Analysis of a Bernouilli sequence, with N = 2000 and
λ = 0.15. From top to bottom: (1) the empirical block entropy
and the true one (dashed), (2) the true (line) and observed
(dots) Zipf-ordered distributions for words of length d = 8; (3)
the scaling exponent γ obtained by fitting the tail of the Zipf-
ordered distribution (error bars represent ±1 standard devia-
tion resulting from the least-squares fit), (4) the bias δ. In this
case, entropies cannot be reliably estimated for word lengths
beyond d = 9. Block entropies are normalized to logNsymb, so
that the maximum possible value is 1.

that the onset of a significant bias occurs around d = 8;
this value is indeed in agreement with the results of the
first panel.

The validity of the bias estimate was tested on vari-
ous examples and was found to be reliable, provided that
Nmax � 1.

In the second example, we consider a sequence of
N = 104 symbols generated by the logistic map
xi+1 = λxi(1 − xi) in a chaotic regime with λ = 3.8.
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Fig. 2. Analysis of a logistic map sequence, with the same
legend as the previous figure; the string length is N = 104.
The second panel shows a Zipf-ordered distribution for d = 18.
The largest word size for which the relative bias is smaller than
10%, is d = 12.

The (generating) partition P = {[0, 0.5[, [0.5, 1]} gives us
a two-letter alphabet.

Figure 2 again shows that the block entropy decreases
above a certain word length. In contrast to the previous
example, the measured scaling exponent γ is small and
almost constant, regardless of the word length. We believe
this to be a consequence of the intricate structure of the

self-similar attractor. This low value of γ already suggests
that rare words should bring a significant contribution to
the entropy. The bias δ finally suggests stopping at d = 12.

5 Conclusion

Summarizing, we have derived a simple expression
(Eq. (13)) for detecting the onset of finite sample size ef-
fects in entropy estimates. It is based on the empirical
evidence that rank-ordered distribution of words tend to
follow Zipf’s law. The criterion reveals that rare events
can significantly bias the empirical entropy estimate.
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